Loading...
# product/story_generator.py
from typing import List, Dict
import openai
from dataclasses import dataclass
import json
@dataclass
class UserStory:
title: str
description: str
acceptance_criteria: List[str]
priority: str
effort: int # Story points
business_value: int # 1-10
dependencies: List[str]
tags: List[str]
class AIStoryGenerator:
def __init__(self, api_key: str):
self.client = openai.OpenAI(api_key=api_key)
def generate_story(self, feature_description: str, context: Dict) -> UserStory:
"""Generate user story from feature description"""
prompt = f"""
You are a product manager creating a user story.
Feature: {feature_description}
Product Context:
- Target Users: {context.get('target_users', 'General users')}
- Product Type: {context.get('product_type', 'SaaS application')}
- Technical Stack: {context.get('tech_stack', 'Web application')}
Generate a user story in this JSON format:
{{
"title": "As a [user type], I want [goal] so that [benefit]",
"description": "Detailed description of the feature",
"acceptance_criteria": [
"Given [context], when [action], then [outcome]",
"..."
],
"priority": "high|medium|low",
"effort": 1-13, // Story points (Fibonacci)
"business_value": 1-10,
"dependencies": ["List of dependent stories or features"],
"tags": ["Relevant tags"]
}}
Ensure acceptance criteria are specific, measurable, and testable.
"""
response = self.client.chat.completions.create(
model="gpt-4",
messages=[
{"role": "system", "content": "You are an expert product manager."},
{"role": "user", "content": prompt}
],
response_format={"type": "json_object"},
temperature=0.7
)
story_data = json.loads(response.choices[0].message.content)
return UserStory(
title=story_data['title'],
description=story_data['description'],
acceptance_criteria=story_data['acceptance_criteria'],
priority=story_data['priority'],
effort=story_data['effort'],
business_value=story_data['business_value'],
dependencies=story_data.get('dependencies', []),
tags=story_data.get('tags', [])
)
def generate_epic_breakdown(self, epic: str) -> List[UserStory]:
"""Break down an epic into individual user stories"""
prompt = f"""
Break down this epic into 3-7 individual user stories:
Epic: {epic}
For each story, provide:
1. Title (user story format)
2. Description
3. 3-5 acceptance criteria
4. Priority
5. Estimated effort (story points)
6. Business value (1-10)
7. Dependencies
8. Tags
Return as JSON array.
"""
response = self.client.chat.completions.create(
model="gpt-4",
messages=[
{"role": "system", "content": "You are an expert product manager."},
{"role": "user", "content": prompt}
],
response_format={"type": "json_object"},
temperature=0.7
)
data = json.loads(response.choices[0].message.content)
return [
UserStory(**story)
for story in data.get('stories', [])
]
def refine_story(self, story: UserStory, feedback: str) -> UserStory:
"""Refine story based on feedback"""
prompt = f"""
Refine this user story based on feedback:
Original Story:
{json.dumps(story.__dict__, indent=2)}
Feedback: {feedback}
Provide improved version addressing the feedback.
"""
response = self.client.chat.completions.create(
model="gpt-4",
messages=[
{"role": "system", "content": "You are an expert product manager."},
{"role": "user", "content": prompt}
],
response_format={"type": "json_object"},
temperature=0.7
)
refined_data = json.loads(response.choices[0].message.content)
return UserStory(**refined_data)# analytics/product_metrics.py
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
from typing import Dict, List, Tuple
import psycopg2
from dataclasses import dataclass
@dataclass
class ProductMetrics:
# Acquisition
new_users: int
activation_rate: float
# Engagement
dau: int # Daily Active Users
mau: int # Monthly Active Users
wau: int # Weekly Active Users
dau_mau_ratio: float # Stickiness
session_duration_avg: float
sessions_per_user: float
# Retention
retention_day_1: float
retention_day_7: float
retention_day_30: float
cohort_retention: Dict[str, List[float]]
# Revenue
mrr: float # Monthly Recurring Revenue
arr: float # Annual Recurring Revenue
arpu: float # Average Revenue Per User
ltv: float # Lifetime Value
cac: float # Customer Acquisition Cost
ltv_cac_ratio: float
# Product
feature_adoption: Dict[str, float]
nps_score: float # Net Promoter Score
churn_rate: float
class ProductAnalytics:
def __init__(self, db_connection: str):
self.conn = psycopg2.connect(db_connection)
def calculate_metrics(self, start_date: str, end_date: str) -> ProductMetrics:
"""Calculate all product metrics for date range"""
# Acquisition metrics
new_users = self._get_new_users(start_date, end_date)
activation_rate = self._calculate_activation_rate(start_date, end_date)
# Engagement metrics
dau = self._get_dau(end_date)
mau = self._get_mau(end_date)
wau = self._get_wau(end_date)
dau_mau_ratio = dau / mau if mau > 0 else 0
session_stats = self._get_session_stats(start_date, end_date)
# Retention metrics
retention = self._calculate_retention(start_date)
cohort_retention = self._calculate_cohort_retention()
# Revenue metrics
revenue_metrics = self._calculate_revenue_metrics(start_date, end_date)
# Product metrics
feature_adoption = self._calculate_feature_adoption(end_date)
nps = self._calculate_nps(start_date, end_date)
churn = self._calculate_churn_rate(start_date, end_date)
return ProductMetrics(
new_users=new_users,
activation_rate=activation_rate,
dau=dau,
mau=mau,
wau=wau,
dau_mau_ratio=dau_mau_ratio,
session_duration_avg=session_stats['avg_duration'],
sessions_per_user=session_stats['sessions_per_user'],
retention_day_1=retention['day_1'],
retention_day_7=retention['day_7'],
retention_day_30=retention['day_30'],
cohort_retention=cohort_retention,
mrr=revenue_metrics['mrr'],
arr=revenue_metrics['arr'],
arpu=revenue_metrics['arpu'],
ltv=revenue_metrics['ltv'],
cac=revenue_metrics['cac'],
ltv_cac_ratio=revenue_metrics['ltv_cac_ratio'],
feature_adoption=feature_adoption,
nps_score=nps,
churn_rate=churn
)
def _calculate_cohort_retention(self) -> Dict[str, List[float]]:
"""Calculate retention by cohort"""
query = """
WITH cohorts AS (
SELECT
user_id,
DATE_TRUNC('month', created_at) AS cohort_month
FROM users
),
user_activities AS (
SELECT
c.cohort_month,
c.user_id,
DATE_TRUNC('month', a.activity_date) AS activity_month,
EXTRACT(MONTH FROM AGE(a.activity_date, c.cohort_month)) AS month_number
FROM cohorts c
LEFT JOIN user_activity a ON c.user_id = a.user_id
)
SELECT
cohort_month,
month_number,
COUNT(DISTINCT user_id) AS active_users
FROM user_activities
GROUP BY cohort_month, month_number
ORDER BY cohort_month, month_number
"""
df = pd.read_sql(query, self.conn)
# Pivot to cohort table
cohort_table = df.pivot_table(
index='cohort_month',
columns='month_number',
values='active_users'
)
# Calculate retention percentages
cohort_retention = {}
for cohort in cohort_table.index:
cohort_size = cohort_table.loc[cohort, 0]
retention_pct = (cohort_table.loc[cohort] / cohort_size * 100).tolist()
cohort_retention[str(cohort)] = retention_pct
return cohort_retention
def _calculate_revenue_metrics(self, start_date: str, end_date: str) -> Dict:
"""Calculate all revenue-related metrics"""
query = """
WITH mrr_calc AS (
SELECT SUM(subscription_amount) AS mrr
FROM subscriptions
WHERE status = 'active'
AND DATE_TRUNC('month', current_period_start) = DATE_TRUNC('month', CURRENT_DATE)
),
arpu_calc AS (
SELECT
SUM(amount) / COUNT(DISTINCT user_id) AS arpu
FROM transactions
WHERE created_at BETWEEN %s AND %s
),
ltv_calc AS (
SELECT
AVG(total_revenue / NULLIF(EXTRACT(MONTH FROM AGE(churn_date, created_at)), 0)) AS avg_monthly_value,
AVG(EXTRACT(MONTH FROM AGE(COALESCE(churn_date, CURRENT_DATE), created_at))) AS avg_lifetime_months
FROM users
),
cac_calc AS (
SELECT
SUM(marketing_spend) / COUNT(DISTINCT user_id) AS cac
FROM user_attribution
WHERE created_at BETWEEN %s AND %s
)
SELECT
m.mrr,
m.mrr * 12 AS arr,
a.arpu,
l.avg_monthly_value * l.avg_lifetime_months AS ltv,
c.cac
FROM mrr_calc m
CROSS JOIN arpu_calc a
CROSS JOIN ltv_calc l
CROSS JOIN cac_calc c
"""
cursor = self.conn.cursor()
cursor.execute(query, (start_date, end_date, start_date, end_date))
result = cursor.fetchone()
cursor.close()
mrr, arr, arpu, ltv, cac = result
return {
'mrr': mrr or 0,
'arr': arr or 0,
'arpu': arpu or 0,
'ltv': ltv or 0,
'cac': cac or 0,
'ltv_cac_ratio': (ltv / cac) if cac > 0 else 0
}# roadmap/prioritization.py
from typing import List, Dict
from dataclasses import dataclass
import pandas as pd
@dataclass
class Feature:
id: str
name: str
description: str
reach: int # Number of users affected per quarter
impact: float # 0.25=minimal, 0.5=low, 1=medium, 2=high, 3=massive
confidence: float # 0.5=low, 0.8=medium, 1.0=high
effort: int # Person-months
@property
def rice_score(self) -> float:
"""Calculate RICE score: (Reach × Impact × Confidence) / Effort"""
return (self.reach * self.impact * self.confidence) / self.effort
class RoadmapPrioritizer:
def __init__(self):
self.features: List[Feature] = []
def add_feature(self, feature: Feature):
"""Add feature to roadmap"""
self.features.append(feature)
def prioritize_rice(self) -> pd.DataFrame:
"""Prioritize features using RICE framework"""
data = []
for feature in self.features:
data.append({
'id': feature.id,
'name': feature.name,
'reach': feature.reach,
'impact': feature.impact,
'confidence': feature.confidence,
'effort': feature.effort,
'rice_score': feature.rice_score
})
df = pd.DataFrame(data)
df = df.sort_values('rice_score', ascending=False)
df['rank'] = range(1, len(df) + 1)
return df
def prioritize_value_effort(self) -> pd.DataFrame:
"""2x2 matrix: Value vs Effort"""
data = []
for feature in self.features:
value = feature.reach * feature.impact * feature.confidence
# Categorize into quadrants
if value > 1000 and feature.effort <= 3:
quadrant = 'Quick Wins'
priority = 1
elif value > 1000 and feature.effort > 3:
quadrant = 'Major Projects'
priority = 2
elif value <= 1000 and feature.effort <= 3:
quadrant = 'Fill-ins'
priority = 3
else:
quadrant = 'Time Sinks'
priority = 4
data.append({
'id': feature.id,
'name': feature.name,
'value': value,
'effort': feature.effort,
'quadrant': quadrant,
'priority': priority
})
df = pd.DataFrame(data)
df = df.sort_values('priority')
return df
def generate_roadmap(self, quarters: int = 4) -> Dict[str, List[Feature]]:
"""Generate quarterly roadmap based on capacity"""
# Sort by RICE score
prioritized = self.prioritize_rice()
# Team capacity (person-months per quarter)
capacity_per_quarter = 12 # Adjust based on team size
roadmap = {}
current_quarter = 1
remaining_capacity = capacity_per_quarter
for _, row in prioritized.iterrows():
feature = next(f for f in self.features if f.id == row['id'])
if feature.effort <= remaining_capacity:
quarter_key = f'Q{current_quarter}'
if quarter_key not in roadmap:
roadmap[quarter_key] = []
roadmap[quarter_key].append(feature)
remaining_capacity -= feature.effort
else:
# Move to next quarter
current_quarter += 1
if current_quarter > quarters:
break
quarter_key = f'Q{current_quarter}'
roadmap[quarter_key] = [feature]
remaining_capacity = capacity_per_quarter - feature.effort
return roadmap# experiments/ab_testing.py
import numpy as np
from scipy import stats
from typing import Dict, Tuple
from dataclasses import dataclass
@dataclass
class ABTestResult:
control_conversion: float
variant_conversion: float
relative_improvement: float
p_value: float
is_significant: bool
confidence_interval: Tuple[float, float]
sample_size_control: int
sample_size_variant: int
statistical_power: float
class ABTestAnalyzer:
def __init__(self, significance_level: float = 0.05):
self.alpha = significance_level
def analyze_test(self,
control_conversions: int,
control_visitors: int,
variant_conversions: int,
variant_visitors: int) -> ABTestResult:
"""Analyze A/B test results"""
# Calculate conversion rates
control_rate = control_conversions / control_visitors
variant_rate = variant_conversions / variant_visitors
# Calculate relative improvement
relative_improvement = (variant_rate - control_rate) / control_rate * 100
# Two-proportion z-test
p_value = self._two_proportion_ztest(
control_conversions, control_visitors,
variant_conversions, variant_visitors
)
# Statistical significance
is_significant = p_value < self.alpha
# Confidence interval
ci = self._calculate_confidence_interval(
variant_rate, control_rate,
variant_visitors, control_visitors
)
# Statistical power
power = self._calculate_power(
control_rate, variant_rate,
control_visitors, variant_visitors
)
return ABTestResult(
control_conversion=control_rate,
variant_conversion=variant_rate,
relative_improvement=relative_improvement,
p_value=p_value,
is_significant=is_significant,
confidence_interval=ci,
sample_size_control=control_visitors,
sample_size_variant=variant_visitors,
statistical_power=power
)
def _two_proportion_ztest(self,
control_conv: int, control_total: int,
variant_conv: int, variant_total: int) -> float:
"""Perform two-proportion z-test"""
p1 = control_conv / control_total
p2 = variant_conv / variant_total
p_pool = (control_conv + variant_conv) / (control_total + variant_total)
se = np.sqrt(p_pool * (1 - p_pool) * (1/control_total + 1/variant_total))
z_score = (p2 - p1) / se
p_value = 2 * (1 - stats.norm.cdf(abs(z_score)))
return p_value
def calculate_sample_size(self,
baseline_rate: float,
mde: float, # Minimum Detectable Effect
power: float = 0.8) -> int:
"""Calculate required sample size per variant"""
alpha = self.alpha
beta = 1 - power
z_alpha = stats.norm.ppf(1 - alpha/2)
z_beta = stats.norm.ppf(power)
p1 = baseline_rate
p2 = baseline_rate * (1 + mde)
n = (z_alpha * np.sqrt(2 * p1 * (1-p1)) +
z_beta * np.sqrt(p1*(1-p1) + p2*(1-p2)))**2 / (p2-p1)**2
return int(np.ceil(n))# feedback/sentiment_analysis.py
from transformers import pipeline
from typing import List, Dict
import pandas as pd
class FeedbackAnalyzer:
def __init__(self):
self.sentiment_analyzer = pipeline(
"sentiment-analysis",
model="distilbert-base-uncased-finetuned-sst-2-english"
)
self.zero_shot_classifier = pipeline(
"zero-shot-classification",
model="facebook/bart-large-mnli"
)
def analyze_feedback(self, feedback_text: str) -> Dict:
"""Analyze user feedback"""
# Sentiment analysis
sentiment = self.sentiment_analyzer(feedback_text)[0]
# Categorize feedback
categories = [
'bug report',
'feature request',
'usability issue',
'performance complaint',
'positive feedback',
'question'
]
classification = self.zero_shot_classifier(
feedback_text,
categories,
multi_label=True
)
# Extract top categories
top_categories = [
{'category': label, 'score': score}
for label, score in zip(classification['labels'], classification['scores'])
if score > 0.5
]
return {
'text': feedback_text,
'sentiment': sentiment['label'],
'sentiment_score': sentiment['score'],
'categories': top_categories
}
def aggregate_feedback(self, feedback_list: List[str]) -> pd.DataFrame:
"""Aggregate and analyze multiple feedback entries"""
results = [self.analyze_feedback(fb) for fb in feedback_list]
return pd.DataFrame(results){
"maxTokens": 4000,
"temperature": 0.5,
"systemPrompt": "You are an AI-powered product management agent focused on data-driven decision making and strategic planning"
}User story generation producing vague or untestable acceptance criteria
Use INVEST criteria (Independent, Negotiable, Valuable, Estimable, Small, Testable). Add Given-When-Then format. Validate with: story.has_measurable_criteria().
A/B test statistical significance calculations showing false positives
Set min sample n=384 for 95% confidence. Use sequential testing with alpha spending. Check p-value <0.05. Run power analysis. Validate with chi-square test for proportions.
Product roadmap prioritization ignoring engineering effort estimates
Use RICE scoring (Reach Impact Confidence Effort). Weight effort inversely. Normalize 1-10 scale. Formula: (reach * impact * confidence) / effort. Include technical debt.
Analytics dashboard showing incorrect funnel conversion rates
Verify event tracking. Check duplicates. Use cohort analysis for time-based funnels. Formula: sum(conversions) / sum(starts) * 100. Filter bot traffic with user-agent detection.
Feature flags not rolling out properly to target user segments
Check segment logic matches user attributes. Use consistent hashing for rollout. Verify flag evaluation before render. Test: FeatureFlag.evaluate(user_id, 'name'). Monitor metrics.
Loading reviews...
Expert code reviewer that provides thorough, constructive feedback on code quality, security, performance, and best practices
Specialized in creating beautiful, intuitive user interfaces and exceptional user experiences
Expert backend architect specializing in scalable system design, microservices, API development, and infrastructure planning
Growing community of AI engineers actively building with Claude
Live in 5 minutes • Growing community